Removing N-Nitrosodimethlyamine (NDMA) From Water

Jere Freeh New Mexico State University

Which Would You Drink?

Water contamination

- American EPA has drinking water regulations for more than 90 contaminants
- NDMA is on the contaminant watch list
- European Union does not list nitrosamines in the Drinking Water Directive (Council Directive 98/93/EC)

N-Nitrosodimethylamine (NDMA)

Quick Facts

- Probable Human Carcinogen
 - Primary exposure pathway: oral
- Highly mobile in soils
- Highly miscible in water
- Low volatility

Primary Target Organs

Source of NDMA Contamination

- Treated rocket fuel: Aerozine-50 (50% hydrazine, 50% unsymmetrical dimethyl hydrazine (UDMH))
- At White Sands Test Facility 1960s to early 1970s for the Apollo project
- NDMA first detected in facility groundwater in the late 80's at concentrations of 15,000 ppt

Additional Sources of NDMA

- Water treatment facilities that use chloramines for treatment
- Fungicide tolyfluanide
- Beer: 0.5 9.2 μg/L
- Smoked meats: up to 17.2 μg/kg

Percentage of population served with chloraminated water

Greater than 50% 0 %

Common Environmental Exposures to NDMA

Bacon

6,500 ng/kg

64 in 100,000 chance of developing cancer

Assumes eating 50 g of bacon everyday

Beer

500 ng/kg

Water

 $0.42\: ng/L$

1 in 1,000,000 chance of developing cancer

Assumes 3 L of water per day for a lifetime

NDMA Removal

Treat below 10 ng/L (part per trillion)

NDMA Treatment at White Sands

band around 227 nm.
12 30-kW UV (mercury vapor) lamps
200 to 250 nm.

Annual electrical cost

- \$112,000 (UV/Ox tower)
- \$560,000 (entire system)

Goals of My Research

- Treat water to less than 10 ppt
- Provide a cost effective alternative treatment
- Create carbons with the environment in mind

Logistics...

Logistics

Carbon Activation

Char Feedstock: Pecan

- 18 million kg/year in southern New Mexico and western Texas
- New Mexico has 20% of the U.S pecan production
- 4.5 kg of pecan nuts yield
 2.2 kg of shell waste
- Shell waste is sometimes used as landscape mulch

Pyrolysis

Inert

Pecan Shell Char

Raw
2 m²/g
Mostly
macropores

450°C 250 m²/g Mesopores/ micropores 550°C 151 m²/g Mostly micropores

Preliminary Data

NDMA Adsorption on Pecan Shell Char

Activation with K₂CO₃

Next steps

- Expand isotherms for base chars
- Data on activated carbons from base chars
- Evaluate pyrolysis and activation processes
- Estimate adsorption kinetics

Acknowledgements

- NASA White Sands Test Facility
 - Dave Amidei
 - Mike Zigmond
- Dr. Omar Holguin
- Barry Dungan
- NMSU Freeport McMoRan Water Lab
 - Mark Chidester
- Jose Rodriguez and Maribel Dominguez
- NMSU Environmental Health and Safety

Questions

Jere Freeh

jaf2@nmsu.edu

